
Alarm Scanning for PPC
Improved performance

Wed, Jun 25, 2008

The alarm scan logic used in IRM software checks every analog channel and every digital bit for 
possible alarm checking, even though most channels and bits don't require it. In IRMs, nonvolatile 
memory access time is not significantly different from dynamic RAM access time. But in the PPC 
systems, nonvolatile memory access is much slower than DRAM access. This note describes the 
improved scheme in alarm scanning for PPC nodes, although it was first implemented for 68K nodes. 
This note was originally written in 2001 as a plan. This version is an attempt to bring it up to date.

Background
As a reference point, the time for an IRM to perform a complete alarm scan, which it does 

every 15 Hz cycle, was about 1.0–1.5 ms. The time for PPC systems was slower, perhaps 1.5–2.0 ms, 
due to the slow access time to nonvolatile memory. Both of these times are for systems that allocate 
1K channels and 1K bits. For the Linac upgrade, however, we doubled the number of channels 
allocated in some nodes, and we also doubled the number of bits. This would double the alarm scan 
time so that it would approach 4 ms. This is the time we tried to reduce. Whether this is deemed 
significant enough to matter, for a job that is performed once every 66 ms, is a separate consideration.

The plan
The basic idea takes advantage of the fact that the vast majority of channels and bits in any 

system are not enabled for alarm scanning, so that if we could merely check alarms for those channels 
and bits that are enabled for alarm scanning, the time required could be much less.

The plan is to occasionally perform a scan that builds up a list of the active channels and bits. The 
alarm scanning logic is modified to check only those channels and bits that need to be checked. All 
others are completely ignored.

How often is it worth reconstructing this alarm channel/bit list? Ideally, we only have to reconstruct 
the list when a change is made to the alarm flags such that the Active bit becomes set. Such changes 
are very infrequent in normal operation. If only listype-directed processing sets an Active flag, and 
not an informal memory access, then special code can monitor whether reconstructing the list is 
needed and set a flag to alert the Alarms task its next time around. Turning off the Active bit should 
also result in an immediate change, because a channel might refer to what is now an inactive entry, 
and it would not check that entry, whereas it needs to see it one more time to decide whether to emit 
a “good” message. Still, it may be useful to occasionally reconstruct the list just to be safe. If the alarm 
flags word is modified in memory, which is very unusual, at least the list of active entries would not 
remain invalid forever.

For a setting that specifies the alarm flags listype or the nominal value listype with 6 bytes of setting 
data in tow, a special routine is called. The routine that is called to set the analog alarm flags is 
SETANOM. The routine required to set the binary alarm flags word is simply SETBFLG. (SETANOM calls 
SETAFLG.) So, the special code for monitoring when alarm flags are changed is placed in SETFLG, a 
routine that is called by both SETAFLG and SETBFLG.

Since the SETAFLG logic preserves the active bit for one more alarm scan in the case that it is to be 
turned off, the reconstruction operation logic should be placed at the end of the alarm scan, not at its 
beginning. If the bit is being turned off, the Active bit will be forced set, and another bit will be set 
that will cause the alarm scan logic to remove the Active bit, once it has had a chance to determine 
whether a "good" message should be posted. The new action by SETAFLG triggers a reconstruction of 
the fast alarm scan list at the conclusion of the next alarm scan.

The reconstruction effort is scheduled separately for the analog and digital cases. If only a change in 
an analog channel's Active bit is done, only the analog list reconstruction is required.

The case of the comment alarms is abbreviated. We have a default table size of 64 entries, whereas we 



have never used more than 2 entries. A reconstruction scan is also done for these entries, triggered by 
changes in the comment alarm flags. 

The set-type routines signal the Alarms task to do the reconstruction. They do this is by sending a 
task event to the Alarms task. Three separate task events are used to cover the three basic cases of 
analog, binary, and comment.

Alarm scanning
Alarm scanning logic, then, sequences through the array of channel numbers, obtaining a 

pointer to the ADATA entry for that channel, and continues with the usual logic: check for the Active 
bit, and if set—which it will very likely be—branch to the usual code for processing, after which the 
code returns to the top of the loop to pick up the next entry in the list of active channel numbers.

Similar logic is used for the binary and comment cases, using the appropriate list of indexes for each.

After all alarm scanning is complete, check for the three additional task events that might be set to 
enable reconstruction of the appropriate array of table indexes. These events are not waited on, but 
rather watched for following the 15 Hz alarm scan.

List memory
Where is the memory found for holding the index arrays? We allocate a block of memory for 

each of the three cases for this purpose. Upon initialization of the Alarms task, three pointer variables 
are set to NULL. When processing each case, if the pointer is NULL, skip the alarm scan, but allocate 
the block instead and set the event bit. After the alarm scan logic, check for the appropriate event bit 
set. If the event was set, construct the array of indices according to which table entries have the Active 
bit set in the alarm flags field. During the next cycle, the valid pointer will enable the alarm scan to be 
performed. The point is that the list reconstruction logic is done as part of the Alarms task.

By using allocated memory blocks for the lists, we have to work a bit to find the addresses of the 
arrays being scanned for alarms. Find the Alarms task variables, and the 3 pointers should be there. 
At this writing, for a PPC node, look up the task Id for the Alarms task, in entry #1 of the Task Table 
based in low memory at 0x000700. This is an address that points to a VxWorks task control block. 
Take the address found at the beginning of this block, subtract 200 bytes, and one should find the 
three list block pointer variables, for the analog, binary, and comment cases. As a check, following the 
third pointer should be a copy of the BADDR table entry for byte 0x14, which corresponds to the 
alarm options byte that includes Bits 0x00A0–0x00A7. At this writing, it is 0x4800FF14.

For 68K nodes, the procedure is different. Take the task Id for the Alarms task, as above, but then 
add 0x46, take the pointer found there and subtract 80 bytes. This is the address of the three list block 
pointers, which should be followed by 0x40FF14.

Each of the three allocated active record blocks uses the same header structure that provides some 
simple diagnostics.

Field Size Meaning
MBlkSize 2 Size of allocated block
MBlkSpar 4 (spare words)
MBlkType 2 Memory block type# =000A

ActivT 2 Time to perform reconstruction of active entry array in µs
ActivN 2 Current #active entries
ActivMn 2 ActivN minimum
ActivMx 2 ActivN maximum

ActivC 4 Count of alarm-flag-change-initiated reconstructions
ActivCB 4 Count of periodic backup reconstructions

Alarm Scanning for PPC p. 2



ActivDT 8 BCD Date/time of last non-backup reconstruction

ActivA 2048 Array of active entries (assuming 1024 allocated entries)

The diagnostics show how many times a reconstruction takes place, especially when it is a result of 
changing an alarm flags Active bit. It also shows when such a change was last done. In any case, it 
includes the time for performing the reconstruction.

The initial implementation was for the 68040-based nodes. In a system that has 65 active analog 
channels, one active bit and 2 comments, the execution time of the Alarms task is now about 400 µs. 

The benefit in using this new logic is quite dramatic for the PowerPC case. Running at 233 MHz cpu 
clock, the access time to the non-cacheable nonvolatile memory is about 1 us. This was the motivation 
for considering the new logic, in which only the entries that need to be examined are actually checked 
for alarm conditions. See the timing results for the PPC later in this note.

One may have considered a different approach, that of copying the ADATA table into ordinary DRAM, 
where the access time is very fast. But keeping these two sets of entries in sync would have been 
difficult. An alarm scan can cause several bits in an alarm flags word to change. If the system dies, we 
need the nonvolatility of the entire table, including the alarm flags, settings, nominal and tolerances. 
The approach followed seems less risky, where the actual nonvolatile entries are still scanned for 
alarms. The performance improvement arises from skipping all the entries whose Active bits are off.

More details
Each change in an alarm flags word uses a special set-type routine invoked via the relevant 

listype. This routine determines whether the alarm flags Active bit is being changed. If it is, it signals 
the Alarms task via the appropriate task event. Although the Alarms task is not actually waiting on 
these events, it will detect them after its next alarm scan. This is done because a user who tries to turn 
off the Active bit will cause the "bypass control" bit to be set and the Active bit to remain set, so the 
next alarm scan can detect this case, and if necessary, emit a "good" alarm message.

In addition to a reconstruction resulting from changing an Active bit, it is forced to occur periodically, 
just as a precaution. The period as implemented is about 9 minutes, or 8192/15 seconds at 15 Hz. 
(This is done by monitoring the low 13 bits of the global cycle counter.) All 3 reconstructions take 
place periodically, but they do not occur on the same 15 Hz cycle.

The modifications to the ASCAN, BSCAN, and CSCAN routines in the Alarms task are made as much 
alike as possible. Two new routines were added; the ACTBLOCK routine allocates an active index 
block, and the ACTBUILD routine reconstructs the block.

Minimize accesses to nonvolatile memory
Since the nonvolatile access time is so slow, we looked at a means of limiting the required 

accesses to improve the time for the actual alarm checking. This is especially true for the ASCAN 
routine that accesses entries in the ADATA table.

Fields of an ADATA table entry that are accessed for alarm scanning are these:
Reading
Nominal
Tolerance
Flags
Count

The Flags field must be looked at each time. The Count field only needs to be accessed when alarm 
changes are detected. The Reading, Nominal and Tolerance fields need to be checked each time, 
of course. We may modify the Flags and/or Count words, but none of the other fields. We can read 

Alarm Scanning for PPC p. 3



the Reading word separately, then read the Nominal and Tolerance words using a single long 
word access. This will save the time needed for one access every time. We can also read the Flags 
and Count words as a single long integer, also saving one access some of the time. (It may not be 
necessary to examine the Count word in many cases.) We may have to modify one or both of them, 
but often, we only have to read it.

Examples from the previous code:
Near the end of the ASCAN loop, there was a place where the #times nibble, which is part of 

the Count field, is to be reset. If we have already made a copy of this Count field, we should first see 
whether the nibble is already set, before updating the Count word. Also, with a copy of that field 
already handy, we do not have to both read and write it to clear the nibble, but can rather write the 
updated Count value with the hi nibble cleared. (We already know the value of the low 12 bits.)

New viewpoint:
Copy out the Flags and Count words as a long word, then separate them into separate local 

variables for the flags word and the count word. Any place in the code used in checking for alarms 
where this information needs to be accessed or modified, do it to these local copies. At the end of the 
loop, check whether any change has been made to any of the potentially-alterable fields. If the final 
value of the local flags word is different from the original value, or if the count value has changed, 
perform the appropriate long integer write to update both the Flags and Count fields. 

Delay accessing the Reading, Nominal and Tolerance fields until we know that these fields need 
to be referenced, based upon the floating point flag bit in Flags. Only then do we know whether the 
ADATA table needs to be accessed for these fields, or whether it is instead the FDATA table that should 
be accessed. Both tables are in nonvolatile memory. For ADATA, one can access the Nominal and 
Tolerance words as a single long word. For FDATA, two 32-bit accesses are required to get the two 
floating point fields.

A simple example can illustrate the potential savings of time. For the integer case of a reading that is 
currently in the "good" alarm state and remains so, there were 7 accesses to nonvolatile memory. In 
the new way, there might be only 3, the Flags/Count long word, the Reading word, and the 
Nominal/Tolerance long word. In this simple case, neither the Flags word nor the Count word 
needs to change. In cases where the tries nibble needs to be changed, say, only one more access is 
required.

In some of the Linac nodes, there may be 150 readings checked, including both analog and binary. 
Assuming that access to nonvolatile memory costs 1 µs, then the time required for 7 accesses each 
would cost 1 ms, whereas with the new way, less than half that time does the job.

With the code modified according to this scheme, and if later on, a faster form of nonvolatile memory 
were found, the code would still run faster, maybe almost 3 µs faster than before. A complete alarm 
scan done in well under 1 ms is ok for a 66 ms cycle time.

Again, the time required in a PPC node with 45 signals was about 2.2 ms. This is reducible to well 
under 0.5 ms with the changes outlined here. As an example, in node0610, with 72 active channels 
and 81 active bits, the Alarms task completes its scan in about 150 µs. In node0611, with 91 active 
channels and 58 active bits, the alarm scanning time is also about 150 µs. In node061C, with 15 active 
channels and 19 active bits, the scan time is only 60 µs.

Lesson
Knowing that each nonvolatile memory reference might require 200 cpu wait cycles can have a 

major impact on how the code should be best organized. Local variable accesses, since they are in 
faster cacheable dynamic ram, almost don't count. The time needed for intensive use of nonvolatile 
tables depends almost entirely on the number of accesses made to nonvolatile memory. An algorithm 
that minimizes the number of such accesses will win.

Alarm Scanning for PPC p. 4


